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The conventional balancing machines utilize two-plane separation for the determination
of equivalent imbalances. However, the imbalance masses of a crank-shaft cannot be
corrected at arbitrary locations of the balancing planes. This study has presented a modi"ed
method for balancing crank-shafts by using the soft-pedestal machines. The modi"ed
in#uence coe$cient method for asymmetrical rotor-bearing systems has been applied to
balance crank-shafts. Also, the decomposition method for irremovable masses has been
replaced by an iteration method based on an in#uence coe$cient approach. Furthermore,
the validity and accuracy of the modi"ed approach are veri"ed in balancing practical
crank-shafts.

( 2000 Academic Press
1. INTRODUCTION

The in#uence coe$cient balancing method uses known trial masses to determine
experimentally the sensitivity of a rotor-bearing system. It subsequently calculates a set of
discrete correction masses which minimizes whirl responses. In conventional procedures,
a trial mass is applied "rst to one of the balancing planes and the rotor responses are
measured, and this process is repeated for all other balancing planes. An in#uence
coe$cient matrix is then obtained from these data.

Early research in rotor balance was conducted "rst by Thearle [1], then by Baker [2].
Their method was essentially a two-plane, two-sensor, single-speed and exact-point
in#uence coe$cient balancing procedure. Goodman [3] extended the in#uence coe$cient
procedure to include the least-squares method for balancing #exible rotor-bearing systems.
Although the method had been known and published, it was more an art than a science. It is
important, however, to evaluate the method because it is widely used and gives satisfactory
results. Lund and Tonneson [4] examined the validity and accuracy of the in#uence
coe$cient method and investigated the in#uence of various instruments on the accuracy of
the experiments. Tessarzik et al. experimentally evaluated the balancing precision of the
in#uence coe$cient method by the exact-point speed procedure [5] and the least-squares
procedure [6]. Linear programming techniques were employed by Pilkey and Bailey [7] for
regulating the balance weight magnitudes and by Pilkey et al. [8] for locating optimal
balancing planes through constraint equations. Other important reports on analytical and
experimental investigations involving in#uence coe$cient balancing were surveyed by
Darlow [9].

In the conventional in#uence coe$cient method, a single trial mass applied to each
balancing plane with measured displacement is employed to calculate in#uence coe$cients
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and unbalance distribution. Since the conventional method disregards the unequal properties
of rotating parts and asymmetry of bearings, it cannot provide an equivalent imbalance
distribution.

In the paper of Kang et al. [10], a formulation of in#uence coe$cient matrices
was derived from motion equations for asymmetrical rotors using complex co-ordinate
representation and the "nite element method. On the basis of their study, the in#uence
coe$cient approach can be veri"ed analytically and proven that it is not an art but
a science. From the theoretical developments, this study proposes modi"ed in#uence
coe$cient procedures for balancing the asymmetric rotor-bearing systems. Three
modi"cations are made: (a) two trial masses are applied at two di!erent positions of each
balancing plane, (b) forward precessions are utilized to determine the in#uence coe$cients
and the original imbalance distribution, and (c) multi-plane balancing procedures are
proposed for rigid crank-shaft rotors. On the basis of the present modi"cations, the
imbalance correction can be obtained.

The engine crank-shafts are typically asymmetrical rotors, which have the unequal
properties in two principal directions. Conventional balancing machines for crank-shafts
are of the hard-pedestal type, by which the imbalance forces are recorded by two load cells
mounted on two pedestals. Since the measured forces of two bearing supports can be
equivalent to the imbalance forces of two balancing planes, statically, the asymmetrical
properties of crank-shaft need no regard. However, the counterbalances of crank-shaft have
provided multi-plane to balance, according to the exact point. The force-to-force method of
the hard-pedestal type gives only two equivalent imbalances, but the crank-shaft with
multi-plane can be corrected. Furthermore, balancing machines of the soft-pedestal type
have an algorithm vibration sensitivity structure and multi-plane balancing. They provide
more precise results of imbalance correction than balancing machines of the hard-pedestal
type.

Some of the earliest general reference works to include discussions of balancing machines
were those by Je!cott [11], Timoshenko [12], and Kroon [13]. Similar discussions were
presented in the Shock and Vibration Handbook [14], in which several machines
and methods for balancing rigid rotors are described. Also, the International Standards
Organization (ISO) has issued documentation on balancing machines and plane separation
of two-plane rotors [15].

A two-plane, two-sensor, single speed and exact-point in#uence coe$cient method is
generally valid and utilizable for balancing the rigid rotor on a balancing machine either
of a soft or a hard-type. Den Hartog [16] described two-plane separation utilized by
a cradle-balancing machine for rigid rotors. He also described how the in#uence coe$cient
approach is used in Gisholt}Westinghouse balancing machines. Rao [17] gave both
descriptions about the plane separation and in#uence coe$cient approach individually for
balancing the rigid rotors with two bearing planes. Actually, the plane-separation and
in#uence coe$cient approach are equivalent and similar, both being based on the linear
theory of sensitivity.

In the operation of balancing machines of the soft-pedestal type, the principles of
plane separation are utilized to separate imbalance e!ects into discrete planes. The modern
balancing machine accomplishes this plane separation of imbalance by means of electrical
networks. The rotor is supported by two bearings and vibration sensors at two points
that convert response to voltage. Because of the opposite direction of conduction, the
voltages and, by means of a voltage ampli"er or divider, the imbalance e!ect due to
that of the plane can be reduced to zero at another sensor. By similar reasoning, one of the
sensors is read out, which is una!ected by the other plane, to indicate the imbalance on
this plane.
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Thus far, plane separation has been discussed in the above paragraphs for two-plane and
rigid rotors only. Some rotors, such as crank-shafts, long turbine rotors, and generator
rotors, etc., need balancing in several planes for reducing mass concentration at two planes.
However, the commonly used balancing machines have some di$culty in balancing these
complex rotors by using multi-plane correction. Kang et al. [18] derived an algorithm of
plane separation based on the exact-point in#uence coe$cient approach. From the analysis,
a generalized procedure for multi-plane separation of balancing a rigid rotor is provided by
an inference from two-plane separation and then three-plane separation. This process of
multi-plane separation can be utilized by a balancing machine to correct a large number of
planes simultaneously or successively.

Furthermore, Yeh and Yu [19] have provided theoretical description about the
conventional method for balancing crank-shaft. They have utilized the two-plane and
exact-point algorithm to determine imbalances on two calibrated counterbalancing planes.
The imbalances have then been transferred to every counterbalance by the decomposition
of vectors for locating removable masses at approximate positions. This method
decomposes the vectors by using statics only, and thus the dynamical imbalance remains.
Until now, the operations of crank-shaft balancing in industry have utilized a similar
balancing method, but it does not provide a high-quality result.

Based on the balancing theory of the asymmetrical rotor and the principle of the
multi-plane balancing rigid rotor on a balancing machine, this study proposes the modi"ed
method of soft-pedestal machine for balancing crank-shafts. The validity of the present
formulation and the modi"ed balancing method is veri"ed both by computer simulations
and by balancing experiments. All the examples indicate that the modi"ed in#uence
coe$cient balancing method can yeild better balancing quality than the conventional
balancing method does.

2. INFLUENCE COEFFICIENT METHODS OF CRANK-SHAFT

The in#uence coe$cient method is well developed and widely used in rotor dynamics. In
the paper of Kang et al. [10], a formulation of in#uence coe$cient matrices was derived
from motion equation for asymmetrical rotors using complex co-ordinate representation
and the "nite element method. Also, from the analysis, the modi"ed in#uence coe$cients
are found correlated to forward precession and imbalance forces when the asymmetry of the
bearings is considered. Due to the unequal properties in two principle directions, the
present formulation results in two sets of modi"ed in#uence coe$cients. The formulation
indicates that two trial masses in di!erent directions are required in the two trial operations
for each balancing plane.

On the basis of Kang et al. [10], the two in#uence coe$cient matrices for a crank-shaft
can be obtained
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where g0
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are the real and the imaginary parts of r0
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Similarly, another trial mass P@@
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is applied at di!erent angular positions of the same

jth balancing plane. Equation (3) can then be rewritten as

rA
k
"

2
+
j/1

[A
kj

(P0
j
#PA

j
)#B

kj
(Q0

j
#QA

j
)]"gA

k
#icA

k
. (4)

Subtracting equation (2) from equations (3) and (4), the following equations are obtained:
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The non-homogenous equation (5) can be solved for the modi"ed in#uence coe$cients
that relate the response at the kth point to the imbalance force at the jth plane.

3. MEASURED RESPONSE OF SOFT-TYPE BALANCING MACHINE

For a soft-type balancing machine, the horizontal sti!ness of its bearings is much smaller
than the vertical sti!ness. Thus, the vertical displacement is disregarded, and required
measurements are only for lateral vibration.

For non-axisymmetrical bearings, the synchronous whirl follows an elliptical orbit which
includes forward and backward precessions. The synchronous whirl excited by imbalance
can be expressed as

q"q`e*Xt#q~e~*Xt. (6)

where q` and q~ are forward and backward precessions, respectively, as shown in Figure
1(a). The rotating vector of the synchronous whirl is combined with two vectors. These two
vectors rotate at the same speed X, where one rotates in the positive X direction and the
other in the opposite direction. Accordingly, the precessions q` and q~ of the kth point can
be expressed as
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For a balancing machine of the soft-pedestal type, the rotor oscillates in a horizontal
direction and a photodetector on a keyphasor is installed to detect the re#ective mark or
keyway for each revolution as shown in Figure 1(b). When the rotor rotates in
a counterclockwise direction,
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Figure 1. Whirl orbit and measurements of unbalance responses: (a) whirl orbit of a rotor mounted on
anisotropic bearings; (b) typical measurements of balancing machine with soft pedestals; (c) whirl orbit of a rotor
mounted on soft pedestals.

BALANCING CRANK-SHAFTS 281
and
z:0 (9)

can be measured, where y
c
"y cos (W

y
#b), y

s
"sin (W

y
#b), and the phase angle W

y
is

determined by the di!erence between two measurements of the photodetector and



282 Y. KANG E¹ A¸.
proximeter. Equations (7a) and (7b) can be reduced to
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Thus, the amplitudes of both forward and backward precessions are half of the maximum
response as shown in Figure 1(c). The amplitude of forward precession is obtained by the
determination of

f
k
"Dq`D">/2, (11)

where> is the amplitude of horizontal displacement. When a trial mass is applied to one of
one balancing planes and the rotor responses are measured, the amplitude of forward
precession is half of the maximum amplitude of horizontal vibration.

Thus, the in#uence coe$cient matrices of unsymmetrical rotors with non-axisymmetrical
bearings can be determined by the forward precession of the synchronous whirl and the trial
mass.

4. DETERMINATION OF IMBALANCE

Rearranging equation (2) to real and imaginary parts and assembling into a matrix form
results in
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where [AR]#i[AI]"[A] and [BR]#i[BI]"[B]. Equation (12) can be assembled into
matrix form:

[C]MkN"MrN, (13)

where MkN"(MP0
v
NTMP0

w
NT)T, MrN"(Mg0NTMc0NT)T, and the dimension of [C] is 2K]2J. All

the elements of [AR], [AI], [BR] and [BI] have been obtained by solving equation (5).
Equation (13) can be rewritten as

[D]MkN"M f N, (14)

where M f N is the vector of amplitudes of forward precession, M f N"MrN/2 and [D]"[C]/2.
For rigid-body balance number of balancing planes and measurement locations, the

solution approaches of equivalent imbalance distribution can be classi"ed into the following
three categories:

(1) In the case where the number of measurements is less than the number of balancing
planes, the equivalent imbalance is obtained by pre-multiplying the measured
response vector with the pseudo-inverse matrix of [D]:

MkN"[D]T([D][D]T)~1M f N. (15)
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The method cannot give a unique and credible solution. Thus, it is seldom utilized in
industrial application.

(2) In the case where the number of measurements is greater than the number of
balancing planes, no attempt is made in the balancing process to reduce the vibration
entirely. However, the sum of squares of the displacement amplitudes can be
minimized by using the least-squares procedure. The following algorithm that utilizes
weighting factors can be used. The solution of the imbalances is calculated by

MkN"([D]T[=][D])~1[D]T[=]M f N, (16)

where [=] is a diagonal matrix, which is composed of the weighting factors.
If the method leads to correction masses which are too heavy and di$cult to apply,

the magnitudes of the balancing masses are regulated through constraint equations by
the iterative programming procedure, namely, the constrained optimal design technique.

(3) In the case where the number of measurements is equal to the number of balancing
planes, the equivalent imbalance is obtained by pre-multiplying the measured
response vector with the inverse matrix of [D]:

MkN"[D]~1M f N. (17)

5. DECOMPOSITION METHOD FOR CORRECTION

The operation speeds of a crank-shaft are always far below their "rst mode frequency.
Thus, the crank-shaft can be treated with the rigid balancing method. Only two measurements
are needed in the balancing operation, and displacements of other positions can be
determined by linear interpolation. Furthermore, two equivalent imbalances located on two
balancing planes can be determined by using equation (17).

However, the con"guration of a crank-shaft is non-symmetric about the spin axis, due to
multi-counterbalancing planes. Thus, a crank-shaft cannot be corrected by removing
masses at arbitrary locations of balancing planes. The equivalent imbalance must be
decomposed into components on two axes of a co-ordinate divided by a speci"ed angle /.
As shown in Figure 2, the angle / is measured from the right side to the left side of
a counterbalance where the mass is removable.
Figure 2. Angle co-ordinates of /.



Figure 3. Vector decomposition of the conventional method.
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The components of imbalance k on both axes of the /-co-ordinate are obtained
from both sides OA and OC of the parallelogram OABC. The decomposition of k is shown
as

k0"OA"k cos h!k sin h cot/,

k("OC"k sin h/sin/,
(18)

where h is the included angle of the vector of k and 0-axis of the co-ordinate.
Balancing multi-plane crank-shafts by the rigid-rotor method does not allow the removal

of masses from two counterbalances according to computing results. The irremovable mass
on both planes should be decomposed to other counterbalances where the masses can be
removed.

The conventional decomposition method of the irremovable imbalance uses the principle
of force balance and moment balance. Take for example a four-cylinder crank-shaft as
shown in Figure 3(a). The counterbalances are symmetricall about the mid point of the
rotating axis. Firstly, this crank-shaft is balanced by using three planes ¸, M and R. The
plane M is virtual and located at the mid point of the rotating axis. Both planes ¸ and R are
used to determine equivalent imbalances k

L
and k

R
by the two-plane method. Then these

imbalances are decomposed into two components along the /-co-ordinate as k0
L
, k/

L
and k0

R
,

k/

R
. When these components are positive values, they can be directly removed from the ¸ or

R counterbalance. Otherwise, the component is negative; the irremovable mass at the
¸ plane has to be decomposed into two planes M and R by balancing forces and moments
about point ¸.
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As shown in Figure 3(b), k0
L

is decomposed by the determinations
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due to the equilibrium of forces, and
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due to the equilibrium of moments. Thus, the imbalance k0
L
in plane ¸ can be removed by an

identical amount of k0
M
/2 from both planes ¸@ and R@ in the location of the 1803 co-ordinate,

and removed by k0
R

from plane R in the location of the 03 co-ordinate.
Similarly, when the component of equivalent imbalance is on the irremovable position of

the R plane, the component of the imbalance component can be decomposed into the ¸@, R@
and ¸ planes by using a similar determination of equations (19) and (20).

6. INTERATION METHOD OF THE CORRECTION DETERMINATION

In this study, a modi"ed method is proposed. This method utilizes total combinations of
any two counterbalances to be correction planes. Many correction sets can be obtained
from the determination of equivalent imbalances by using equation (17).

MkN
n
"[D]~1

n
M f N, n"1, 2,2, N, (21)

where N is the total amount of sets of corrections.
According to one of the sets of corrections, the removal of imbalance from the crank-shaft

can improve its dynamic balance. The set of corrections which has the least amount of
masses to be removed may be chosen as the initial balancing procedure. However, it is
possible that there are irremovable components of imbalance residue at both correction
planes; some further correction procedures are needed to remove these residual imbalances.

The imbalance responses of residual imbalances can be measured and substituted into
equation (21). N sets of the further corrections Mk

r
N can be obtained from
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r
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where M f
r
N represents the vector of responses due to residual imbalances.

Any one set of Mk
r
N
n

can be chosen to be the further correction for the removal of
imbalance from the corresponding planes. Then the crank-shaft has to be further balanced.
It is noted that the same set of correction planes may not be chosen, because the same
correction planes give the same results of the residual imbalances that are not removable. If
residual responses are still measured, the iterative procedures are to be performed until the
crank-shaft is fully balanced or the measured responses due to residual imbalances are
allowed.

7. COMPARISON BETWEEN BALANCING METHODS

The #ow charts of the conventional method and the modi"ed method for crank-shaft
balancing are shown in Figure 4. For both methods, two balancing planes and two
measurement locations are chosen "rst and the modi"ed in#uence coe$cient matrices are
determined by using two trial operations for each plane. At some balancing speed, two trial
masses are applied at two di!erent positions for each balancing plane. The in#uence
coe$cients are determined by using equation (5). Then, the equivalent imbalances can be



Figure 4. Flow charts for crank-shaft balancing: (a) the conventional method; (b) the modi"ed method.
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obtained by pre-multiplying the responses of the forward whirl due to original imbalance by
the inverse of the in#uence coe$cient matrix.

In the conventional method, the determination of equivalent imbalances utilizes two
counterbalances at both ends of the crank-shaft. Then the decomposition of irremovable
mass to other counterbalances is according to force and moment equilibrium. This method
is also utilized in hard pedestal balancing machines. In this type of machine, the rotating
forces due to imbalances by two load sensors and the equivalent imbalances are determined
and the irremovable mass is decomposed into other counterbalances.

The balancing quality of the conventional method is determined by each and every
procedure. Since the balancing speed and balancing planes are recalled for reselection when
"nal residual response is not accepted, the quality is strongly a!ected by factors including
the robustness of in#uence coe$cients, the position and amount of trial mass, the sensitivity
and accuracy of the balancing machine, the con"guration of the crank-shaft, the measurement
noise and the determination error.
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In the modi"ed method, all combinations of two arbitrary counterbalances have the
responsibility of balancing planes. For the determination of equivalent imbalances, each set
has itself an in#uence coe$cient matrix with respect to identical measurement positions and
equivalent imbalances. The initial correction planes are selected due to the least amount of
equivalent imbalances and the largest removable components.

The irremovable imbalance Mk
r
N induces the residual response M f

r
N. Substituting Mf

r
N into

equation (21), new sets of correction masses are obtained. Also, the set with the least amount
of correction masses is further chosen. If there is no complete set for residual imbalances in
the removable range, the procedures can be kept until the residual responses are fully
accepted.

The in#uence coe$cient approach is utilized iteratively by the modi"ed method. When
the equivalent imbalance has an irremovable component, the determination procedure for
residual imbalance on other counterbalances are repeated. Thus, it can continuously
approach a higher balancing quality over time.

8. CASE STUDIES

Two crank-shafts are used to illustrate the validity of the proposed method.
(1) A four-cylinder, in-line crank-shaft as shown in Figure 5 is mounted on a balancing

machine. The included angle between two limits of correction positions at each
counterbalance is 953 approximately. The balancing data for the determination of
in#uence coe$cients and the measurements of imbalance responses are shown in
Table 1. This table indicates that there are six sets of equivalent imbalances that can
be obtained from the determination of equation (21). The imbalance masses can be
decomposed into components on both axes of the 953-co-ordinate as shown in Table
2. Each set of imbalances has at least one component that is irremovable mass
components from the crank-shaft. For example, the third set of corrections,
planes 1 and 4, are selected. The primary correction for it has the least amount of
equivalent imbalances and the largest removable imbalance components.
The equivalent imbalances on planes 1 and 4 have components on locations at 275
and 1803, respectively; the mass cannot be removed from these locations as shown in
Figure 6.

By using the conventional method, residual imbalances due to irremovable mass
are decomposed into other counterbalances. By using the modi"ed method, six sets of
equivalent residual imbalances are utilized. For the same residual imbalance, six sets
Figure 5. A four-cylinder in-line crank-shaft mounted on a soft-pedestal balancing machine.



TABLE 1

Balancing data for the crank-shaft of an in-line four-cylinder engine

Measurement data due to the modi"ed method

Measurement point Response (mm)

1 2

Original imbalance 0)2435L853 0)2817L2443
The trial mass applied

at plane 1
The "rst position 0)2388L1203 0)2579L2503

The second position 0)3868L933 0)3056L2483
The trial mass applied

at plane 2
The "rst position 0)2340L1013 0)3247L2353

The second position 0)3056L903 0)2483L2353
The trial mass applied

at plane 3
The "rst position 0)2387L913 0)3438L2303

The second position 0)2722L863 0)2292L2273
The trial mass applied

at plane 4
The "rst position 0)2770L713 0)4202L2243

The second position 0)1910L783 0)1910L2103
Product of mass and radius: 848)5 (gmm)

In#uence coe$cient (g~1) due to the modi"ed method

A
11

!0)0104 A
21

!0)0027 A
31

0)0026 A
41

0)0008
A

12
0)0031 A

22
!0)0106 A

32
!0)0007 A

42
0)0022

A
13

!0)0049 A
23

!0)0010 A
33

!0)0046 A
43

!0)0009
A

14
0)0016 A

24
!0)0047 A

34
0)0014 A

44
!0)0037

A
15

!0)0019 A
25

!0)0003 A
35

!0)0072 A
45

!0)0008
A

16
0)0002 A

26
!0)0024 A

36
0)0024 A

46
!0)0063

A
17

0)0051 A
27

0)0014 A
37

!0)0132 A
47

!0)0029
A

18
!0)0014 A

28
0)0041 A

38
0)0031 A

48
!0)0117

Measurement data due to the conventional method

Measurement point Response (mm)

1 2

Original imbalance 0)2435L853 0)2817L2443
The trial mass applied at plane 1 0)2388L1203 0)2579L2503
The trial mass applied at plane 4 0)2770L713 0)4202L2243

Product of mass and radius: 848)5 (gmm)

In#uence coe$cient (g~1) due to the conventional method

A
11

!0)0104 A
21

!0)0027 A
31

0)0026 A
41

0)0008
A

12
0)0027 A

22
!0)0104 A

32
!0)0008 A

42
0)0026

A
13

0)0051 A
23

0)0014 A
33

!0)0132 A
43

!0)0029
A

14
!0)0014 A

24
0)0051 A

34
0)0029 A

44
!0)0132
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can be utilized for further correction. One of the sets is chosen, which is shown in
Figure 7. The "nal correction is attained because both residual imbalances on planes
2 and 4 are located in the range of removable mass. The balancing results of this
crank-shaft using the conventional method and the modi"ed method are shown in
Table 3.



TABLE 2

Equivalent imbalance of two arbitrary balancing planes in the ,rst case

No. of balancing planes The left plane The right plane

Left Right Imbalance (gmm/deg) Imbalance (gmm/deg)

1 2 1144)3L03 1706)7L1803
!2237)6L953 !2191)3L2753

1 3 708)3L03 1345)3L1803
!1600)6L953 !1661)2L2753

1 4 32)3L03 !739)9L03
!917)5L953 988)2L953

2 3 !2926)9L1803 3639)5L1803
5467)6L2753 !5716)8L2753

2 4 !132)5L1803 !762)1L03
1497L2753 1638)8L953

3 4 !36)7L1803 !678)8L03
2093)3L2753 2299L953

Figure 6. The third set of imbalance vectors in the "rst case.

Figure 7. Removable mass of the "nal residual imbalance vector in the "rst case.
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TABLE 3

A comparison of correction between two methods in the ,rst case

The modi"ed method The conventional method

No. of balancing
planes

Location angle
(deg)

Imbalance
(g mm)

Location angle
(deg)

Imbalance
(g mm)

1 0 610)8 0 736)4
95 0 95 0

2 180 101)4 180 736)4
275 1475)4 275 924)2

3 180 1187)3 180 736)4
275 116)1 275 924)2

4 0 0 0 0
95 1639)1 95 1765)9

Total amounts * 5130)1 * 5823)5

Figure 8. Crank-shaft of a V6-cylinder engine.
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(2) The second case is a crank-shaft of a six-cylinder V-shaped engine as shown in Figure
8, which has "ve counterbalances. The included angles of removable regions for each
counterbalance are not all the same. The balancing data for determination of the
in#uence coe$cient and the measurements of imbalance responses are shown in
Table 4. There are 10 sets of equivalent imbalances that can be obtained from the
determinations of equation (21). The imbalance masses can be decomposed into
components by a co-ordinate of arbitrary angle /, as shown in Table 5. Also, Table
5 indicates that the fourth set is preferred to be corrected initially since it has the
fewest equivalent imbalances and the largest components of removable imbalance
mass.



TABLE 4

Balancing data for the crank-shaft of a <6-cylinder engine

Measurement data due to the modi"ed method

Measurement point Response (mm)

1 2

Original imbalance 0)3295L2753 0)2006L1013
The trial mass applied

at plane 1
The "rst position 0)3390L2423 0)1910L963

The second position 0)1576L3003 0)1815L1053
The trial mass applied

at plane 2
The "rst position 0)3295L2493 0)2053L1073

The second position 0)1767L2793 0)2244L1003
The trial mass applied

at plane 3
The "rst position 0)3199L2643 0)2674L1273

The second position 0)2769L2773 0)3104L953
The trial mass applied

at plane 4
The "rst position 0)3438L2843 0)3677L1413

The second position 0)3677L2743 0)4154L933
The trial mass applied

at plane 5
The "rst position 0)3263L2893 0)4202L1463

The second position 0)4154L2733 0)4775L913
Product of mass and radius:1380 (g mm)

In#uence coe$cient (g~1) due to the modi"ed method

A
11

!0)0086 A
21

0)0013 A
31

0)0008 A
41

!0)0003
A

12
!0)0023 A

22
!0)0087 A

32
0)0004 A

42
0)0010

A
13

!0)0067 A
23

0)0069 A
33

!0)0010 A
43

0)0000
A

14
0)0000 A

24
!0)0070 A

34
0)0000 A

44
!0)0011

A
15

!0)0028 A
25

!0)0005 A
35

0)0056 A
45

!0)0008
A

16
!0)0002 A

26
!0)0024 A

36
!0)0005 A

46
!0)0051

A
17

0)0025 A
27

!0)0002 A
37

!0)0113 A
47

0)0016
A

18
0)0001 A

28
0)0018 A

38
!0)0008 A

48
!0)0099

A
19

0)0040 A
20

!0)0005 A
39

!0)0141 A
49

0)0017
A

110
0)0003 A

210
0)0039 A

310
!0)0014 A

410
!0)0128

Measurement data due to the conventional method

Measurement point Response (mm)

1 2

Original imbalance 0)3295L2753 0)2006L1013
The trial mass applied at plane 1 0)3390L2423 0)1910L963
The trial mass applied at plane 5 0)3263L2893 0)4202L1463

Product mass and radius:1380 (g mm)

In#uence coe$cient (g~1) due to the conventional method

A
11

!0)0086 A
21

0)0013 A
31

0)0008 A
41

!0)0003
A

12
!0)0013 A

22
!0)0086 A

32
0)0003 A

42
0)0008

A
13

0)0040 A
23

!0)0005 A
33

!0)0141 A
43

0)0017
A

14
0)0005 A

24
0)0040 A

34
!0)0017 A

44
!0)0141
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TABLE 5

Equivalent imbalance of two arbitrary balancing planes in the second case

No. of balancing planes
The left plane The right plane

Left Right Imbalance (g mm/deg) Imbalance (g mm/deg)

1 2 6430)2L3003 !6908)8L3303
!830)8L603 438)6L203

1 3 2661)4L3003 157)1L2303
!470L603 !1930)2L2853

1 4 1887)9L3003 1271)6L1303
!477)3L603 !519)6L1803

1 5 1720)9L3003 934)6L853
!481)5L603 382)2L2053

2 3 5165)6L3303 0L2303
!4234L203 !3267L2853

2 4 3198)1L3303 1923)3L1303
!2758)2L203 !896)1L1803

2 5 2845)4L3303 1321L853
!2495)4L203 458)8L2053

3 4 811)7L2303 5206)5L1303
4949)7L2853 !2714)9L1803

3 5 !790)9L2303 2940)4L853
4544)4L2853 835)3L2053

4 5 !16449L1303 12203L853
8802)6L1803 3466)7L2053

Figure 9. Imbalance vectors of the initial set for correction in the second case.
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In this case, the equivalent imbalance on plane 1 has a component on the 2403 location
which cannot be corrected, as shown in Figure 9. By using the conventional method, the
residual imbalances are decomposed to other correction planes by utilizing equations (19)
and (20).

By using the modi"ed method, 10 sets of residual imbalances are obtained from equation
(21) iteratively. Finally, the residual imbalances have been reduced into the range of
removable mass as shown in Figure 10. The balancing results of this crank-shaft due to both
methods are shown in Table 6.



Figure 10. The "nal residual imbalance vector in the second case.

TABLE 6

¹he comparison of correction between two methods in the second case

The modi"ed method The conventional method

No. of balancing
planes

Location angle
(deg)

Imbalance
(g mm)

Location angle
(deg)

Imbalance
(g mm)

1 60 0 60 0
300 1720)9 300 1261)2

2 20 0 20 0
330 0 330 0

3 230 945)4 230 1331)8
285 41)6 285 536)3

4 130 0 130 0
180 0 180 0

5 85 1003)5 85 1771)1
205 835 205 473)4

Total amounts * 4544)9 * 5373)8
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The comparisons of the amounts of correction mass and the "nal residual responses
between the modi"ed method and conventional method are shown in Figure 11.
Conventional and modi"ed methods involve the computation of the in#uence coe$cient
and the determination of imbalance by using equation (21), the required time for one
computation being below 1 s. Two and four iterations of the modi"ed method for four- and
six-cylinder crank-shafts, respectively, give these "nal results. However, the determination
of composition needs additional computation time, which is longer than the time needed for
the modi"ed method.

For the measurement noise and the machine inaccuracy, "nal residual responses due to
both methods cannot be zero. Consequently, both cases indicate that the modi"ed method
brings about better quality as compared with the conventional method for balancing
crank-shafts.



Figure 11. A comparison between the modi"ed and the conventional methods: K, of the original responses;
, of the modi"ed method; , of the conventional method.
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9. CONCLUSIONS

This study has demonstrated how the soft-pedestal machine can be utilized for balancing
engine crank-shafts. A modi"ed approach, which is veri"ed on the basis of the modi"ed
in#uence coe$cient theory and the iteration correction technique, has been presented.
A higher balancing quality can be achieved by the modi"ed method, which has been veri"ed
by experiments in case studies.
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APPENDIX A. NOMENCLATURE

A
kj
, B

kj
element in the kth row and the jth column of matrices [A], [B]

[A], [B] in#uence coe$cient matrices
[C] assembly of in#uence coe$cient matrices [A] and [B] in real form
[D] the half of in#uence coe$cient matrices [C]
f amplitude of forward precession
f
r

response due to residual imbalance

i J!1
J, K number of balancing planes, measuring points
P
j
, Q

j
imbalance force

q synchronous whirl
q`, q~ relative components of forward precession, backward precession to a rotating reference

respectively
r translations in a complex form
[=] diagonal matrix is composed of the weighting factors
k imbalance
k
r

residual imbalance
h an included angle of k and 0-co-ordinate axis
t phase measured from a rotating reference
X rotating speed
/ included angle for the limits of removable masses on counterbalance
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Superscript
I imaginary part of a complex variable
o original imbalance
R real part of a complex variable, right correction plane
¹ transpose
@ trial mass at the "rst time/residual imbalance at the "rst iteration
A trial mass at the second time/residual imbalance at the second iteration
0, / 0-axis and /-axis of /-co-ordinates

Subscript
c, s cosine term, sine term
i the equivalent imbalance
j, k the jth balancing plane, the kth measurement point
¸ left correction plane
M median correction plane
n the number of combinations of any two counterbalance planes
R right correction plane
v, w components in <,= directions
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